

Biomaterials Session, June 17, 2022

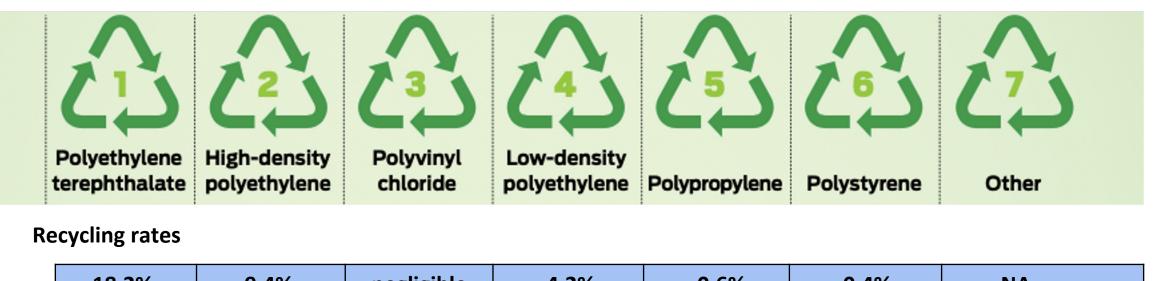
a radical solution to plastic pollution

Dr. Yelena Kann, Founder and CEO

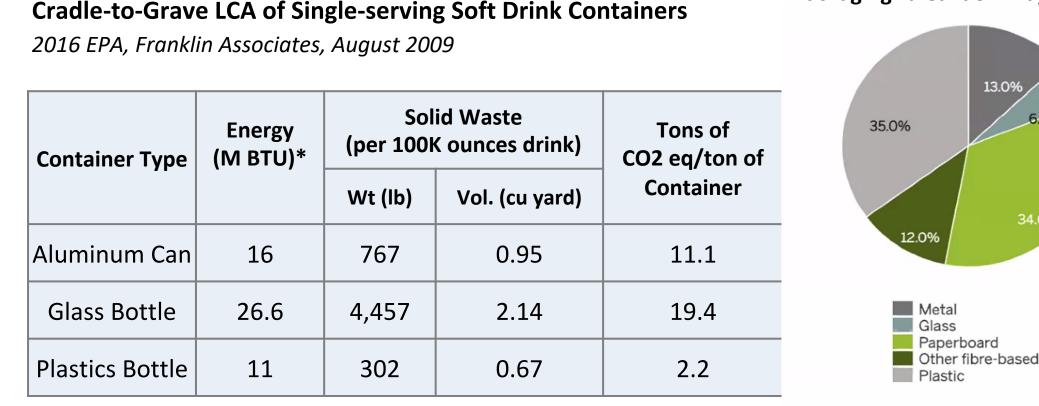
- \$650B industry with 5-8.5% growth per year
- Plastics produced (2020): 400M tons per year

o~5% of all oil consumption and 5% of all energy is used for plastics production

o Only 2M tons per year are bio-based (0.5%)


- Only 9% of all plastics ever made have been recycled (<1%, closed loop recycling)
- 12B tons expected in landfill by 2050
- 8M tons leak into oceans per year

https://purworldindata.org/faq-on-plastics#how-much-plastic-and-waste-do-we-produce


Recycling rates of plastics are low

US recycling data, 2018*

18.2%	9.4%	negligible	4.2%	0.6%	0.4%	NA	
			-			-	

- All polyethylenes and polypropylenes combined have lower overall recycling than even PET
- Plastics have low recycling rates compared to metals (72 88%), paper (65%) and glass (33%)

Packaging: breakdown by materials

13.0%

6.0%

34.0%

Source: Smithers Pira

Plastics save energy, produce less waste and emissions compared with alternative materials

Cradle-to Grave LCA of Grocery Bags

2014 R. Kimmel et al, Clemson University

https://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=1006&context=cudp_environment/

C. DeArmitt, Plastics Paradox, 2020

	Impact Summary of Various Bag Types				
	(Carrying Capacity Equivalent to 1000 Paper Bags)				
	Paper	Compostable	Polyethylene		
	(30% Recycled	Plastic			
	Fiber)				
Total Enegy Usage (MJ)	2622	2070	763		
Fossil Fuel Use (kg)	23.2	41.5	14.9		
Municipal Solid Waste (kg)	33.9	19.2	7.0		
Greenhouse Gas Emissions					
(CO2 Equiv. Tons)	0.08	0.18	0.04		
Fresh Water Usage (Gal)	1004	1017	58		

Paper bag requires 2.7x more energy, 17x more water and emits 1.6x more carbon dioxide. For the same LCA as a single plastic bag, a paper bag has to be reused at least 4x and a cotton bag at least 173x.

To further improve sustainability we need to:

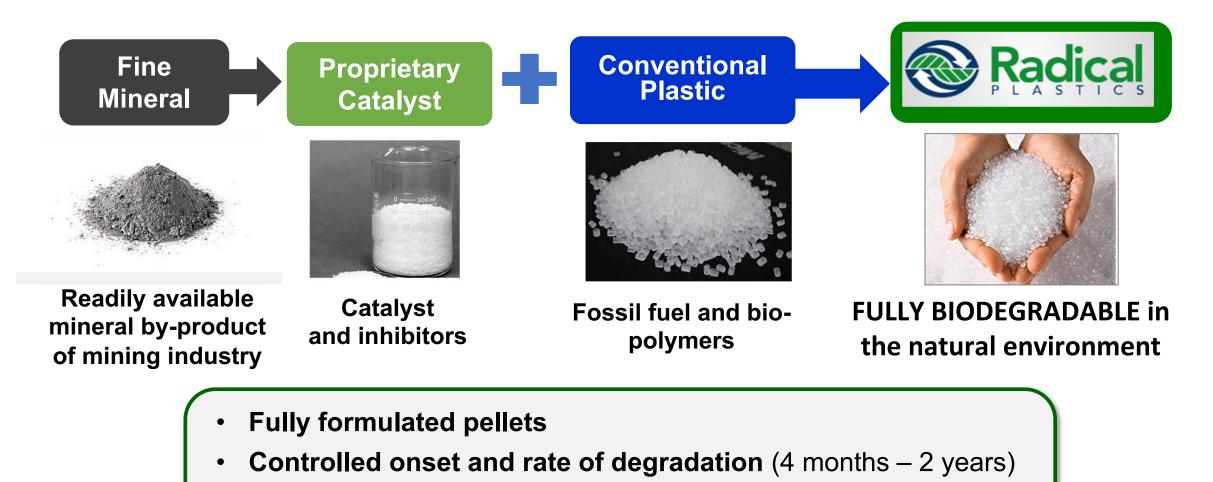
- Promote Circularity (extend carbon utilization, prevent manufacturing of low-quality plastic). Cannot decarbonize plastics.
- The most critical issue is End-Of-Life options for plastics,
 which should be the primary focus

- Possible solutions:

increasing recycling (physical, chemical, and biological) – **biodegradable plastics**

Reduce and eliminate Environmental Pollution

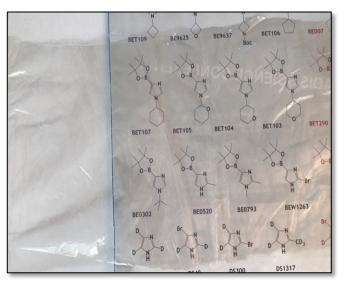
Expansion of current bioplastics space with Radical Plastics technology



Starting with polyolefins, next addressable polymers are acrylics, styrenics, vinyls

Compostable: biodegradable at composting conditions. Biodegradable: biodegradable in soil, marine (natural environment)

0


Radical Plastics Technology: A Simple Formulated Solution Providing Environmental Bio-degradability

- Fully recyclable along with conventional plastics
- Patented technology translatable to different plastic types

The Radical Plastics Solution

- Drop-in replacement for conventional plastics
- Built-in tuneable trigger initiates chemical degradation so that length of service life is controlled
- Complete end-of-life environmental biodegradation
 - Carbon sequestration in soil
 - No toxic by-products
 - Beneficial effect on the soil microorganisms and plants
- Mineral additive: a zero-waste initiative, economical
- Easy processability
- Economical
- Initial focus on Ag films (\$4B market)
- Longer term: flexible packaging (\$150B market)

Transparent with slight earth tone tint

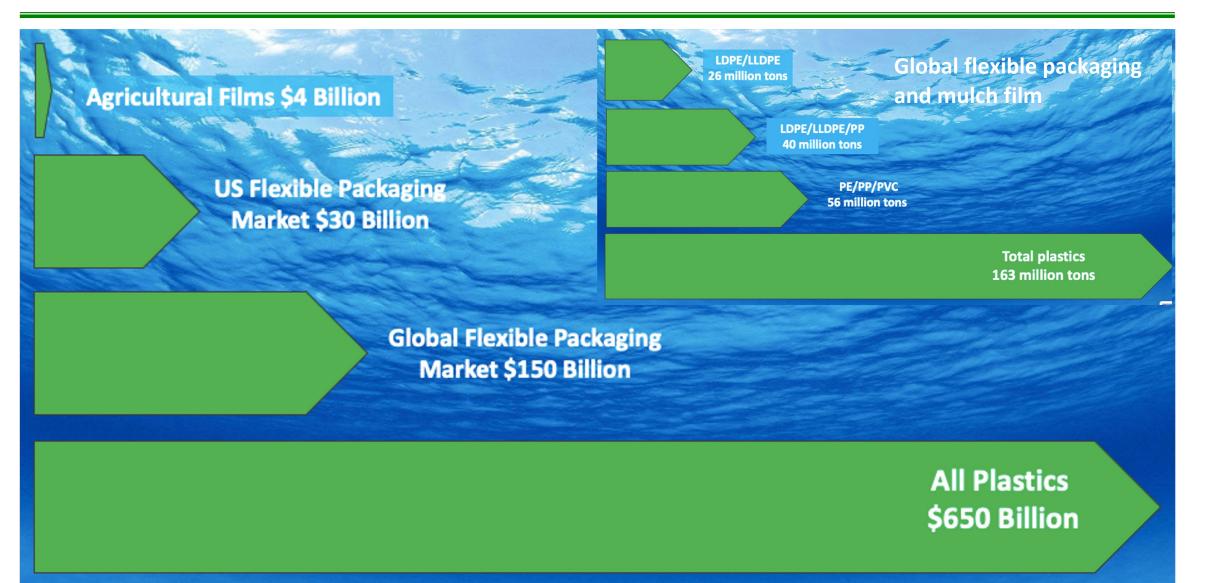
2020 - 2021 Film Field Test for Watermelon Farming Univ. of Florida, Institute of Food and Agricultural Sciences

Watermelon production

Formulated PE Film

Formulated PE Film* PE **Radical Plastics** Films at 21 Days after Harvest **Bed Preparation** Harvest

Radical Plastics


Conventional

* 22 microns, 21" width, funded in part by USDA phase 1 and phase 2 SBIR grant

Mulch Film Supply Chain: Go-to-Market Partnerships

	 Market entry point Tune stability/degradation 			
Resin Manufacturer Makes virgin polyethylene (PE)	Compounder Compounds PE with colors & additives into pellets or directly to film	Film Extruder Turns formulated pellets into film	Distributor Sells rolls of mulch film to farmers	Farmer Lays mulch film in fields
ExonMobil Chemical Draskem	alphagary (************************************	CHARTER NEX FILMS	Progressive Grower AGRICULTURAL SUPPLY	Growers supply

Cleaner, Greener Future

Biomaterials Session, June 17, 2022

Thank You!